3 research outputs found

    Improved uncertainty capture for nonsingleton fuzzy systems

    Get PDF
    In non-singleton fuzzy logic systems (NSFLSs), input uncertainties are modelled with input fuzzy sets in order to capture input uncertainty (e.g., sensor noise). The performance of NSFLSs in handling such uncertainties depends on both: the appropriate modelling in the input fuzzy sets of the uncertainties present in the system’s inputs, and on how the input fuzzy sets (and their inherent model of uncertainty) interact with the antecedent and thus affect the inference within the remainder of the NSFLS. This paper proposes a novel development on the latter. Specifically, an alteration to the standard composition method of type-1 fuzzy relations is proposed, and applied to build a new type of NSFLS. The proposed approach is based on employing the centroid of the intersection of input and antecedent sets as origin of the firing degree, rather than the traditional maximum of their intersection, thus making the NSFLS more sensitive to changes in the input’s uncertainty characteristics. The traditional and novel approach to NSFLSs are experimentally compared for two well-known problems of Mackey-Glass and Lorenz chaotic time series predictions, where the NSFLSs’ inputs have been perturbed with different levels of Gaussian noise. Experiments are repeated for system training under noisy and noise-free conditions. Analyses of the results show that the new method outperforms the traditional approach. Moreover, it is shown that while formally more complex, in practice, the new method has no significant computational overhead compared to the standard approach

    On transitioning from type-1 to interval type-2 fuzzy logic systems

    Get PDF
    Capturing the uncertainty arising from system noise has been a core feature of fuzzy logic systems (FLSs) for many years. This paper builds on previous work and explores the methodological transition of type-l (Tl) to interval type-2 fuzzy sets (IT2 FSs) for given "levels" of uncertainty. Specifically, we propose to transition from Tl to IT2 FLSs through varying the size of the Footprint Of Uncertainty (FOU) of their respective FSs while maintaining the original FS shape (e.g., triangular) and keeping the size of the FOU over the FS as constant as possible. The latter is important as it enables the systematic relating of FOU size to levels of uncertainty and vice versa, while the former enables an intuitive comparison between the Tl and T2 FSs. The effectiveness of the proposed method is demonstrated through a series of experiments using the well-known Mackey-Glass (MG) time series prediction problem. The results are compared with the results of the IT2 FS creation method introduced in [1] which follows a similar methodology as the proposed approach but does not maintain the membership function (MF) shape
    corecore